If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-195x+9000=0
a = 1; b = -195; c = +9000;
Δ = b2-4ac
Δ = -1952-4·1·9000
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-195)-45}{2*1}=\frac{150}{2} =75 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-195)+45}{2*1}=\frac{240}{2} =120 $
| 2(w+6)-4(w-8)=9w+77 | | 8(y+3)=2y | | 11^x=113 | | 24-15=18a+3 | | 11^(x-9)=9^(7x) | | 2(x-5)+14=2(2x+5) | | 4(x-8)-6x=-14 | | 7h+4=2h-6 | | 6z+28=2z+16 | | -10/3=-8r-4/3 | | 3x+2-7x=-4x-15+8-3x | | -8c+151=3c+118 | | 4y+1=6y-1 | | 5(x+2)-7=5(x-5) | | 10/3=-8r-4/3 | | 4y-5=10y+7 | | -x^2+7x+7=-1 | | 2^(x+1)+3.2^x=16 | | 54=2v+4v | | 0.75+x=1 | | -29/24=4/3p+1/8 | | 3y+2y-2=53 | | x+0.03x=281 | | 5d-12=3d+2 | | 4n-2n+6=12 | | 4x+2(3x+10)=150 | | Y-8=34-5y | | 0.5x+x+2x=$10.000,000 | | 15x-20=11x+49 | | 9m-6m=27 | | -88=-8x-8(x+1) | | 3^x=9.42 |